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Eigen Analysis

Eigen Analysis

Objective: Utilize tools from linear algebra to characterize and analyze
matrices, especially the correlation matrix
» The correlation matrix plays a large role in statistical characterization and
processing.
» Previously result: R is Hermitian.
» Further insight into the correlation matrix is achieved through eigen
analysis
» Eigenvalues and vectors

» Matrix diagonalization
» Application: Optimum filtering problems
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Objective: For a Hermitian matrix R, find a vector q satisfying

Rq=)\q

» Interpretation: Linear transformation by R changes the scale, but not the
direction of q

» Fact: A M x M matrix R has M eigenvectors and eigenvalues
qu:)\lql i:172737"'7M

To see this, note
(R=X)g=0

For this to be true, the row/columns of (R — AI) must be linearly dependent,

= det(R—AI) =0
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Note: det(R — AI) is a Mth order polynomial in A
» The roots of the polynomial are the eigenvalues A, Ao, -+, Ays

Rq; = \iq;

» Each eigenvector q; is associated with one eigenvalue \;
» The eigenvectors are not unique

Rq;, = M\aq;
:>R(aqi) = )\i(aqi)

Consequence: eigenvectors are generally normalized, e.g., |q;| = 1 for

i=1,2,....M
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Example (General two dimensional case)

Let M =2 and
Ri1 Rip
R ) ;
[ Ra1 Rap ]
Determine the eigenvalues and eigenvectors.
Thus
det(R—XI) = 0
Ripn—A  Rig
= . ’ =0
' Ron  Rap—A |

= A2~ A(R11+ Ro2)+ (R11R22— Ri2Ra1) = 0

1
= A2 = 5 [(31,1 +Ryo) £ \/431,2R2,1 +(Ri1— R2,2)]
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Back substitution yields the eigenvectors:
Rii—X  Rip qu|_10
Ro1  Rop—X || @ 0
In general, this yields a set of linear equations. In the M = 2 case:

(Ri1—AN)q1+ Ri2¢2 =0
Ro1g1+ (Ra2—\)g2 =0

» Solving the set of linear equations for a specific eigenvalue \; yields the
corresponding eigenvector, q;
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Example (Two—dimensional white noise)

Let R be the correlation matrix of a two—sample vector of zero mean white
noise 9
o 0
R =
Determine the eigenvalues and eigenvectors.

Carrying out the analysis yields eigenvalues

1
Ao = 5 |:(R1’1 + R272) + \/4R172R2,1 + (Rl,l - R2,2):|

= S| +oN ot (0203 =

and eigenvectors
! 0 2 1

Note: The eigenvectors are unit length (and orthogonal)
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Eigen Properties

Property (eigenvalues of RF)

If A1, A2,--+, Aps are the eigenvalues of R, then )\’f,)\g,--- ,)\ffw are the
eigenvalues of RF.

Proof: Note Rq; = \;q;.Multiplying both sides by R k —1 times,

RFq, = iR 'q; = Mq;

Property (linear independence of eigenvectors)
The eigenvectors qi1,q2,- - ,qa, of R are linearly independent, i.e.,

M
> aiqi #0
-1

for all nonzero scalars ay, a9, -+ ,ayy.
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Property (Correlation matrix eigenvalues are real & nonnegative)

The eigenvalues of R are real and nonnegative.

Proof:
Rq, = \aq;
= qZHqu — )\iqZHCIi [pre-multiply by qZH]
ARq.
q;" q;

Follows from the facts: R. is positive semi-definite and q/q; = |q;|> > 0

Note: In most cases, R is positive definite and

>0, =12 M
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Property (Unique eigenvalues = orthogonal eigenvectors)

If A1, A2,--+, Aas are unique eigenvalues of R, then the corresponding
eigenvectors, qi1,q2,- - ,qas, are orthogonal.
Proof:
Rqg; = Xiq;
=q/'Rq, = Nala; ()

Also, since A; is real and R is Hermitian
Raq; = Ajq;
=qR = \qf
=q;'Rq; = Naj'q;
Substituting the LHS from (x)
= Niat @i = \jqf q;
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Thus

Naflai = Ajaf'a;
= \i—\)af'ai = 0

Since A1, A9,---, Aps are unique
qqi=0 i#]

= 1,92, - ,qas are orthogonal.
QED
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Diagonalization of R

Objective: Find a transformation that transforms the correlation matrix into a
diagonal matrix.

Let A1, A2,---, Ay be unique eigenvectors of R and take qi,q9, -+ ,qas to be
the M orthonormal eigenvectors

H L i=y
q; 4; :{ 0 i#j
Define Q = [q1,q2, - ,qas] and Q = diag(A1, A2, ,Aar). Then consider
af’
a3’
QHRQ = . R[Qh‘l%"%‘lM]

aff
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QHRQ = . R[QLQQ»"WQM]

= o | A, A2q2, - Anda]

L0 0 - Ay
= Q"RQ = Q (eigenvector diagonalization of R)
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Property (Q is unitary)

Q is unitary, i.e., Q"' =QH
Proof: Since the q; eigenvectors are orthonormal

QHQ = . [q17q27"'7qM]:I

:>Q_1 _ QH

Property (Eigen decomposition of R)

The correlation matrix can be expressed as

M H
R= Z Aigiq;
i=1
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Proof: The correlation diagonalization result states
QRQ =0

Isolating R and expanding,

R = QQQH - [q17q27"' aqM]Q

Maf

doqd!
= lavaz, - am]| .

Avak
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Aside (trace & determinant for matrix products)
Note trace(A) 2 i A Also,

trace(AB) = trace(BA) similarly  det(AB) = det(A)det(B)

Property (Determinant—Eigenvalue Relation)

The determinant of the correlation matrix is related to the eigenvalues as
follows:

M
det(R) = H i
=1

Proof: Using R = QQQ and the above,

det(R) = det(QQQ™)
= det(Q)det(Q7)det(Q) = det(Q) = ﬁ \i

1=1



FEigen Properties FSAN/ELEGS815

Property (Trace—Eigenvalue Relation)
The trace of the correlation matrix is related to the eigenvalues as follows:

M
trace(R) =) _\;
i=1

Proof: Note

trace(R) = trace(QQQY)

= trace(Q7QQ)
trace(Q)

M
=1

QED
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Matrix-Vector Multiplication

Example in 2D:

and,

y:Ax:[_21 H[HZB]

What is the geometrical meaning of the matrix-vector multiplication?
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» Rotates the vector Z0
» Stretches the vector



Matrix-Vector Multiplication

To rotate x by an angle 6, we pre-multiply by

cosf —sinf
sinf cos@

Stretch x by factor v, pre-multiply by

i

FSAN/ELEG815

x=1[1,3] ~

0.5
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Matrix-Vector Multiplication

Consider the vectors v; and vy depicting a circle. What happens to the circle
under matrix multiplication?

o INSTSE
1.5 \‘\"‘“ Wy,
7 )

-15 -1 05 0 0.5 1 1.5
X

2-D Circle 3-D Sphere n-D Hypersphere
A[v1 V2] A[Vi V2 V3] AlVi - V]
v; € C? v,e C3 v,e C*



FSAN/ELEG815

Matrix-Vector Multiplication

What happens to the 2D circle under matrix multiplication?

Vq, Vs, A € (C2x2 [A][Vl VZ] = [ﬁ1 ﬁz]

TN

01 0]
0 (0))

02Uy Principal axis

Singular values

Uy, U, Unitary orthonormal vectors
01,02 “Stretching” constant

Note: Ortogonality holds since they are all rotated by the same angle.
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Matrix-Vector Multiplication

What happens to the n-D hyper-sphere under matrix multiplication?
AVj = O'Jﬁ]

oq ... 0

0 .. o,
oU3

Unitary orthonormal vectors
u;,u,, .., u,

_ _ “Stretching” constant
n-dim hyper-ellipse 01,02, .., Op
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

The mapping can be written as

AV1 = Ulﬂl
Avn = Ojﬁn
Expressed in matrix form as
01 0
A [Vl V9 Vn] = [ﬁl us ﬁn] :
—_—— | S —

V CnXn ()] cmxn 0 «.. Onp

L J 0cC

A € Cmxn f} CnXxn

AV = 0%
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

Let vi,...,v, be unitary orthonormal vectors, then V =[v; vo ... v,] is a
unitary transformation matrix, that is

v i=vo,

Let Gy,...,0, be unitary orthonormal vectors, then U= [G1 G2 ... Gy,]is a
unitary transformation matrix, that is

u'l=uU
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Reduced Singular Value Decomposition

The mapping is thus given by,
AV = 0%

Multiply both sides by V™! we obtain:

AVV-! = (gxv!
. \VAVACR 1) 3 V2
Al = Usv?
A = 0Onv?

where ¥ = diag([o1,02,...,04]), such that o1 > g9 > ...0, > 0.
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» Reduced SVD

I_I z

NIVERSITY o
Singular Value Decomposition
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cmxn
» SVD

(mem

CTlXTL

DAt 27/103
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Theorem 1

Every matrix A € C™*" has a singular value decomposition (SVD).
» Singular values o; are uniquely determined.
> If A is square o; are distinct.

» u; and v; are also unique up to a complex sign. (unique if the complex
sign is ignored)
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SVD calculation
Start with ATA:

A"A = (uzv)" (uzvh)

— vuuzv?
Aav = vx?vhy
A"PAV = vy?

Reduces to an eigenvalue decomposition problem of the form:

ATAV=VX?
N—— ~~
B A

where A is a diagonal matrix with the eigenvalues of B and V corresponds to
the eigenvectors of B.
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SVD calculation

How do we calculate U:
AA" = (usv") (uzv”)H
= uzv'vzu®
AAT'U = ux?ufu
AA"U = ux?
—— ~~
B A

Eigenvalue problem where A is a diagonal matrix with the eigenvalues of B
and U corresponds to the eigenvectors of B.
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Netflix Movie Challenge

» Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).

» Customers rated movies on a scale from 1 to 5. Matrix is very sparse with “only” 100 million of the
ratings present in the training set.

» Goal: Predict the ratings for unrated movies.

> (2006) “Cinematch” algorithm used by Netflix
RMSE=0.9525 over a large test set.

» Competition started in 2006, winner should
improve this RMSE by at least 10%.

» 2009 “Bellkor's Pragmatic Chaos,” uses a
combination of many statistical techniques to
win.
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Movie Rating - A Solution

’1'
» Describe a movie as an & a 0"‘)@&
array of factors, e.g. ;:\\\‘;0.;\0“6'0\09“
comedy, action... & *&QGQ&‘*“‘ o
/
» Describe each viewer viewe,:‘ ° |.L|/.|/ e == | |
using same factors,
e.g. Iikes Comedy, Iikes Match movie and add contributions predicted
action, etc viewer factors from each factor rating

» Rating based on @[+ ]e] — @]

match/mismatch \\\ \

o o b
%, . %,
/(,, (o) %
» More factors — better % Pa Y
L. . % %
prediction 7, &, o
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Singular Value Decomposition Solution

Viewers rated movies on a scale from 1 to 5. 0 for movies thﬂat were not rated

by the user. g g ¢ g
» Each column j is a viewer1[ 0 [ 1 [ 0 [ 0 [ s
- . Viewer 2 4 2 0 0 0
different movie Vs T =151
Viewer 4 4 2 0 0 0
» Each row i is a different Viewers| 0 L 0 L 0 L0 L >
. Viewer 6 0 0 3 3 0
viewer Viewer 7 1 0 0 0 4
Viewer 8 2 1 0 0 4
Viewer 9 1 0 0 0 4
» Each element a; ;
bl
, ain a1n
represents the rating of A
movie j by viewer i -
m,1 -+ --. Qmpn

Goal: Use SVD to predict unobserved data or the rating of a movie that
hasn't come out yet.
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Singular Value Decomposition Solution

We want to classify Movies and Viewers:

Category 1 S S s S

Viewer 1 0 1 0 0 5

. Category 2 Viewer 2 4 2 0 0 0

Movies = Category 3 Viewer3| 0 | 0] 3 | 3 | o

Viewer 4 4 2 0 0 0

. Viewer 5 0 0 0 0 5

Viewer 6 0 0 3 3 0

Intuitively, if Movie; =~ Movies, these movies T
are similar (same category). Viewers[ 1 | 0 | 0] o] a

Categories are determined by matrix A and SVD algorithm.
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Singular Value Decomposition Solution

Now, consider that each movie belongs to more than one category e.g. half
comedy and half action. This can be written as:

Movie; = viCatl +voCat2+--- +v,Catn

s.tfv|l2 =1 g ¢
. . nx1 Viewer 1 0 1 0 0 5
where the set of categories {Catj € R"*"} vewes e T T o T o1
forms an orthonormal basis. Viewers 0 L 0 | 5 1 5 |0
Viewer 4 4 2 0 0 0
Viewer 5 0 0 0 0 5
1 0 O Viewer 6 0 0 2 3 0
0 1 0 Viewer 7 1 0 0 0 4
Cat = Viewer8 | 2 1 0 0 4
0 Viewer9 | 1 0 0 0 4
0 0 1

nxn
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Singular Value Decomposition Solution

In the case of Viewers, we use the same Mowvies' categories:

Category 1
Movi Category 2 . ¢ ¢ ¢ 2 g
ovies = Category 3 ( — Viewers. § § § 8 §
i Viewer 1 0 1 0 0 5
Viewer 2 4 2 0 0 0
Viewer 3 0 0 3 3 0
. . Viewer 4 4 2 0 0 0
E.g. a viewer that loves comedy is represented vewers o T o T o T o=
with the same unit vector of the comedy venerell @ |l o o LS |G
. . 1xn Viewer 7 1 0 0 0 4
category movies (Cati € R™*") . Viewers| 2 | 1 | 0 | o | a
Viewer 9 1 0 0 0 4

Each Viewer is represented as:

Viewer; = wuiCatl +uoCat2+--- 4+ u,Catn
s.t.||ulla2=1
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Singular Value Decomposition Solution

If m >n i.e # of Viewers > # of Movies, each Viewer is represented as:

Viewer; = wujCatl +uoCat2+--- 4+ u,Catn+ - - - +u,, Catm
s.t.||ull2=1

where Cati € R'™. Thus, useless categories vectors with zero rating value
are added.
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Singular Value Decomposition Solution

From Theorem 1:
There exist a unique decomposition into categories. Every matrix A € C"*"
can be factorized as A = UXV where:

Cnxn Cnxn

(men men
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Singular Value Decomposition Solution

We have more viewers than movies:

men

New categories are created. The new vectors are still unit vectors orthonormal
to all the basis vectors but the ratings of these useless categories are zero.

Note: consider reduced SVD i.e. consider only useful categories.
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Singular Value Decomposition Solution

cmxn cmxn

cnxn cnxn

> Each row vector (u;) in U represents the taste of a Viewer; on the
corresponding categories.

[
I
I
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Singular Value Decomposition Solution

me'fl (men

:

cnxn cnxn

» Each column (v;) in VT represents the content of a Mowvie; on the
corresponding categories.

Ul,l oo o .. Ul,n
VH = . . . . —

Un1l -+« .- Unn

Vi Vo ... Vn]

)
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Singular Value Decomposition Solution

me'fl (men

:

cnxn cnxn

» Each singular value ¢;; in 3 computes how a viewer of category i rates a
movie of the same category 1.

o1 0 - 0
E - 0’2,2 )
0 0 ... oppn
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Singular Value Decomposition Solution

The representation of each movie can be obtained by

Movie; = vy Catl+wvg;Cat2+---+ v, jCatn s.tflvjll2 =1
0 0
/02,2 0
= : +"'+Un,j :

0 On.n
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Singular Value Decomposition Solution

The representation of each viewer can be obtained by

Viewer; = w;1Catl+4u;2Cat2+---+u;,,Catn+ -+ 4 u; ,, Catm
s.tuilla =1, Catj=0 for j > n — useless categories
0o 1" o 1"
/022 0
= : + e + U’i,TL :
0 On,n

H
NG T e
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Singular Value Decomposition Solution
Given the decomposition of a movie and a viewer, the rating is estimated by:

Viewer;Movie; = ;101,011 +i202,j022+ 4+ Ui nUpn j0nn
= wVE) (V)
= UZ'EV,,'
viewer [@[o[@®] [of [o]e]
movie |o[@|¢[ [Of [e]e]
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Singular Value Decomposition - Example

Considering the rating from 60 viewers
to 16 movies of 4 different
genres(action, romance, sci-fl,

comedy), we generate A ¢ R60x16

> Viewers rated movies on a scale
from 1 to 5, 0 for movies that
were not rated by the user.

I
60 Viewers
]

» Observe the same 4 categories of
viewers.
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Singular Value Decomposition - Example

10
20
30
40
50
10 20 30 40 50 60 .
0
-04 0 04 0.8

7
VH

-j_:
0 20 -05 0
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Singular Value Decomposition - Example

.
04 0 04 08

Similar
Viewers

—
.3—

s
VH
T

0 20 -05 0 0.5
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Singular Value Decomposition - Example

.
04 0 04 08

o

Similar Movies
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Singular Value Decomposition - Example

To estimate not rated movies (zero entries in A), we use additional
information: A is known to be low-rank or approximately low-rank.

Thus, we are going to use the k-rank approximation of the matrix A that is:
A=u3s, Vv

where f]k has all but the first & singular values o;; set to zero.

The ratings different from zero in A are set to its original value.

Note: The ratings matrix A is expected to be low-rank since user preferences
can be described by a few categories (k), such as the movie genres.
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Singular Value Decomposition - Example

Only k=4 singular values
different from zero
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Principal Component Analysis (PCA)

» Simple, method for extracting relevant information from confusing data
sets.

» How to reduce a complex data set to a lower dimension?
» Consider a mass attached to a spring which oscillates as shown below.

4
N

wX k

F =ma
d2f
_W2f = _ 7
l wef =m it
o f(@®) = Acos(wt + wp)

What if we did not know that F' = ma?
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PCA - Motivation: Toy example

» Since we live in a 3D world — use three cameras to capture data from the
system.

» No information about the real x,y, and z axes — camera positions are
chosen arbitrarily.

» How do we get from this data set to a simple equation of z ?

Camera 1: (y4,21)
Camera 2: (Y2, 23)

%Camera ) Camera 3: (3, 23)

Z Cameral

= 7@ n
y Y1
Camera 3\Z Z1 | Issues with the data

X = Y2« Noise
yrandz; € R™" 22| « Redundancy
n: number of samples
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PCA - Motivation: Toy example

» Three cameras give redundant information.

» Only one camera at a specific angle necessary to describe the system
behavior.

» PCA is used to avoid redundancy.

Cameral Camera 2 Camera 3
" : i
esal®” - s’
#& A i
e wnsl, e
3¢ K. o 0P
s N : 2
i ~? .
. ; .
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Change of Basis

» PCA: Is there another basis, which is a linear combination of the original
basis, that best respresents the data set?

» Let X be the original data set, where each column is a single
measurements set.

» Let Y be a linear transformation by P, i.e. Y =PX, where
X = [x1]...|xs] and x; € R™*! represents a sampled vector.

Implications:
» Geometrically P is a rotation and a stretch which transforms X into Y.

» The rows of P, {py,...,p,,} are a set of new basis vectors for expressing
the columns of X.

What is the best way to re-express X7, what is a good choice for P?
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Noise

2

» Signal and noise variances are depicted as 0z, and opjce.

» The largest direction of variance is not along the natural basis but along
the best-fit line.

» The directions with largest variances contain the dynamics of interest.

» Intuition: Find the direction indicated by ogignal.
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Redundancy
: ::- i * ;.’;:: . i’ﬁ
A Yay 3
N :‘:. ."‘: . ’ 'E'DX:- . ‘ﬁ
-.i_ ‘. -‘ B --'&:&; ‘i
', T . r, L r s
Lﬁ |_r1 : |_r1
low redundancy high redundancy

» Figures depict possible plots between two arbitrary measurement types r;
and ro.

» Low redundancy — uncorrelated recordings

» High redundancy— correlated recordings, e.g. the sensors are too close or
the measured variables are equivalent.

» |f recordings are highly correlated it is not necessary to measure both of
them.
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PCA - Basic concepts
Let a = [a1,a2,...,a,] and b= [b1,ba,...,b,] be two sets of measurements.

Are they related?
If the mean of a and b is zero, then:

Intuitive concept of variance
5 T "

» Variance: How large the change is in each

High variance

vector. . ,
::Low varia,qcé~»
1 B e e
02 =—aal Za 7 /
n n
1 1
l? — *bbT *Zb? K) 5 10 15
n n< :
a
a
» Covariance: Statistical relationship
between data in a and b.
2 I - ,
Oup = —ab” = — Zazbz : Statistically |
n n < Inner Product Independent
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Variance and Covariance

Let X be defined as X = [x]|...|x ], where x; € R"*!

. k
is a column vector that corresponds to all
measurements of a particular type. Then the Camera 1
covariance matrix is defined as: = Camera.z

1 A(@ m

Cx = —XXT "

n ;1 Camera 3\%

The covariance values reflect the noise and redundacy X= ;2
3

in the measurements. 73
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Variance and Covariance

k

Camera 1

Recall Cx is the covariance matrix of X defined as s

1 T ml Camera 2
;; Camera 3\
X =
» Covariance matrix in the spring example is Cx € R6*6: ¥
Z3
) 2 2 2 2 2 7
0511/1 03121 Ty1yo Ung Ugws 05123
Uglyl 05121 U;wz 05122 0511/3 05123
a, g, g, g, g, a,
CX — '%le zQZl 2Y2 g2z2 2Y3 %223
J§2y1 ngzl 052@,2 05222 0523/3 05223
Ugy,yl Ug:m Tysyo 0%322 Tysys 0%323
-O-ZSyl 02321 UZSyZ 02322 0-231/3 0-2323—

» Diagonal: Variance measures; Off-diagonal: covariance between all pairs.
> Cx is hermitian and symmetric, i.e. Cx = Ck * = C¥%.
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O-élyl O—élzl Jél@/Q 0—2122 U%lyS 0_2123
Ugwl U§1z1 U§1y2 Ugmz 0;13/3 U§1Z3
Cx — ng?ﬂ ngm ngyz Tyozs 0%2743 Oyozs
ngw ‘75221 ngyz ‘75222 ngys 05223
Ug3y1 0%321 Ugsyz Oy3zo Uggys Oyszg
—Uz3y1 0-2321 UZng O-ZSZQ O-Z3y3 02323—

Off-diagonal terms
» |f covariance is large then components are statistically dependent.

» |f covariance is small then components are statistically independent.
Diagonal terms:
» If variance is large it contains a lot of information about the system.

» |f variance is small it does not provide significant information about the
system.
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PCA

Goal: Change basis such that the covariance matrix of the data is diagonal.
» If off-diagonal terms ~ 0, the redundancies are eliminated.
» Diagonal terms represent the variance of each component.

» Components with large variance are the most representative.

CX:

Looks like the SVD!
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PCA and Eigenvalue Decomposition

How to solve the problem?
» Data set: X € R"*™, where m is the number of measurement types and
n is the number of samples.
» PCA : Find an orthonormal matrix P in Y = PX such that Cy = %YYT is
a diagonal matrix.
» The rows of P are the principal components of X
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PCA and Eigenvalue Decomposition

We begin rewriting Cy in terms of the unknown variable.

Cy

1
~vyy”
n

i(PxxPxﬁ“

1

n
1

P<XXT>PT
n

PCxP”

PxxTpT
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PCA and Eigenvalue Decomposition

Cx can be diagonalized by an orthogonal matrix of its eigenvectors since it is
a symmetric matrix. Let P = QT where Q is a matrix with the eigenvectors
of 1XX”, then:
Cy = PCxP”

= P(QQQ")P”

= P(PTQP)P"

= (PPHQ(PP )

= O

The transformation Y = PX diagonalizes the system. Covariance of Y is a
diagonal matrix with the eigenvalues of %XXT.



PCA and SVD
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The SVD of X is given by X = UZVT. Let P = U7, then:

Y = UTX,

The covariance matrix of Y is given by:

Cy

1
n
1
“uTxxTu
n

\o

lUTUZVTVZUTU
n

1
2
n
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PCA

> The transformation Y = U7X diagonalized the system. Covariance of Y
is a diagonal matrix with the squared singular values of X multiplied by a
factor of %

» It can be concluded that £? = Q, and 022 =\

» The principal components of the data matrix are given by ut.
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Application: Face Recognition

» PCA in face recognition £ Eigenfaces
» Intuition: Figure out the correlation between the rows/ colums of A from
the SVD.
A=UzV’" (1)
» How important each direction is: X
» Principal Directions: U

» How each individual component (row/column) projects onto the principal
components: V.
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Data in Face Recognition

The data matrix is constructed by vectorizing the face images as shown below,
ie. A=[AT|AL| . |AL]T. The matrix will be N x M, where N is the
number of images in the data base and M is the number of pixels of each
image.

Vectorized Image

[ A G LF ]

image 1 A,
image 2 A,
A =|image3| =|A;
~ : :
- ™ image N Ay

Discretized Image Data Matrix
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Example - Celebrity Images

Example, take 5 images of each celebrity: George Clooney, Bruce Willis,
Margaret Thatcher and Matt Damon. In the example, M = 240 x 160 = 38400
and N = 20.

| —————— —Image 20 —————— -

=20 x 38400



Average Faces

NIVERSITY or
EIAWARE
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How do the average of the faces of these celebrities look like?

where A; € RI*M
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Average Faces

What defines George Clooney's face?

» Data matrix A € RV*M with the images of the
example.

» Compute the correlation matrix of the features of
the dataset, i.e. the pixels.

» The correlation matrix is C = ATA € RM*M  here
M = 38400.

» High correlation values — everybody has eyes, a
nose and a mouth.

» Correlations between images of the same person
will be higher.

Average Face
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Eigendecomposition

» Obtain the eigenvalue
decomposition of
C=ATA. Thatis
C=QQQ "

» First eigenvectors
q; € RM*1 are called the
principal components
(eigenfaces).

Eigenvalue Spread
1010F

» One can reconstruct each
face as a weighted sum of
the eigenvectors.

5 10 15 20
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Representing Faces onto Basis

Each face A; € R"*M in the data set A = [AT|AT]...|A%]T, can be
represented as a linear combination of the best K eigenvectors:

K
A] =" w;q;, where w; =q] A] (2)
j=1
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Projection of the Average faces into the K=20 largest
Eigenvectors

» Qis M x M, from now on let V be the matrix formed by the first K=20
eigenvectors, i.e. V € RM*K,

» Project the average faces a; € R™M onto the reduced eigenvector space,
ie. p;, =aV eRE

» Projections for each face are characteristic of each average face and could
be used for classification purposes.

2000 4000 2000 2000

Clooney Willis Thatcher Damon
2000 0
0 0
0 -2000
-2000 -2000
-2000 -4000
-4000 -4000 -6000 -4000
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
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Projection of new images

|

>

v

Test set: New image of Margaret Thatcher, Maryl Streep as Margaret
Thatcher in “The Iron Lady”, Betty White.

Project test images onto eigenvector space, p = xV € RMX  where
x € R"™*M s the new vectorized image and V € RM*K is the matrix with
the first 20 eigenvectors of the database.
Reconstruct images as x = Vp'.
Error defined as the difference between the projection of the new image
and the projection of the original Margaret Thatcher images o;V where
j=1,...,5, thatis

oV x|

[lo; V|

where o; are the original images of the database, in this case the 5 images
of Margareth Thatcher.
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Projection of new images

Image depicts, from left to
right
» Test images.

[lo;V —xV]|
[lo;VI|

» Projection of the test
images onto the
eigenvector space p = xV.

» Reconstructed images
using the first 20
eigenvectors of the
database x = Vp' .

» Error of the projection with
respect to each original
Margareth Thatcher Image
o; for j=1,...,5.




Projection of new images

05

0.4

03

0.2

01

p =xV
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1 2 3 4 5
Clooney

1

2 3 4 5

Thatcher

4000
3000
2000
1000
0
-1000
-2000
00, 5 10 5 20
7
llogv—xv| ' oV —xvi|| liogv —xvi| [0,V — xV]|
oVl | oVl | i | o
0.4 0.4 0.4
03 03 0.3
0.2 02 0.2
01 01 01
0 0 0

Damon
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Matrix Approximations and Completion

Given an m x n matrix Z = {z;;}, find a matrix Z that approximates Z.

> Z may have simpler structure.
» Missing entries in Z, a problem known as matrix completion.

Approach based on optimization:
Z=arg nﬁémx |1Z —M||% subject to ®(M) < ¢ (3)

where [|A|[} =Y, j|as;]? is the Frobenius Norm, and ®(-) is a constraint
function that encourages Z to be sparse in some sense.
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Constraint ¢(Z) Resulting method

(a) ||2||g1 <c Sparse matrix approximation
(b) rank(Z) < k Singular value decomposition
(o) |Z]|« < ¢ Convex matrix approximation

> (a) £1-norm of all entries of Z. Leads to a soft-thresholding Z2i5 = sign(zij) (|zi5] — )+,
where v > 0 is such that 331", >, |25 = c.

> (b) Bounds the rank of Z, or the number of nonzero singular values in Z.
Approximation is non-convex, but solution found by computing the SVD and
truncating it to its top k components.

» (c) Relaxes the rank constraint to a nuclear norm (||A||« = Z?j{l{m’n} ;). Solved by

computing the SVD and soft-thresholding its singular values.
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Motivation: Image Reconstruction from Incomplete Data

Reconstructed image Incomplete image 50% of the pixels

Matrices with missing elements can be solved exactly using method (c),
whereas methods based on (b) are more difficult to solve in general.
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Matrix Completion

The Singular Value Decomposition

Given an m X n matrix Z with m > n, its singular value decomposition takes

the form
Z-UDV” (4)

» U is an m x n orthogonal matrix (UTU = 1,,) whose columns u; € R™ are
the left singular vectors.

> V is an n x n orthogonal matrix (VTV =1,,) whose columns v; € R" are
the right singular vectors.

» The n x n matrix D is diagonal, with d; > dy > --- > d,, > 0 known as
the singular values.
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Matrix Completion

The Singular Value Decomposition

» If columns of Z are centered (zero mean), then the right singular vectors
{v; };.L:l define the principal components of Z.

» The unit vector vy yields the linear combination s; = Zv; with highest
sample variance among all possible choices of unit vectors.

» s, is the first principal component of Z, and v; is the corresponding
direction or loading vector.
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The Singular Value Decomposition
Suppose r < rank(Z) = 800, and let D, be a diagonal matrix with all but the
first r diagonal entries of D set to zero. The optimization problem

Z = i Z-M
r ran&%:TH ||F (5)

has a closed form solution Zr = UDrVT £ the rank-r SVD. 2T is sparse in the
sense that all but r singular values are zero.

JEATERS 4 JEATERS 4 T
JANUARY'29 e JANUARY'29 LS

800 Singular Values 164 Singular Values 24 Singular Values 12 Singular Values
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Matrix Completion

Problem Formulation: Recover an m x n matrix Z when we only get to
observe p < mn of its entries.

» Impossible without additional information!
» Assumption: Matrix is known to be low-rank or approximately low-rank.
» Matrix Completion: Fill the missing entries.

» Used in: machine learning, computer vision...
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Optimization Problem

» Observe the entries of the m x n matrix Z indexed by the subset
Qc{l,---,m}x{1,---,n}.

» Seek the lowest rank approximating matrix Z that interpolates the entries

of Z
minimize  rank(M) (6)
subject to mi; = Zij, (Z,]) € €,
» Rank minimization problem is NP-hard.

» Forcing interpolation leads to overfitting.
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Optimization Problem

» Better to allow M to make some errors on the observed data:

minimize  rank(M)

subject to > (25 —my)* <6, (7)
(i,4) €
or equivalently
L 2
minimize Zii —mii)°,
rank(M)<r (Z,%:EQ( " ZJ) (8)

» Both problems are non-convex, and exact solutions are generally not
available.
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Matrix Completion Using the Nuclear Norm

» Nuclear norm of M,,,xn:

n

M+ = > 0x(M) (9)

k=1
» Convex relaxation of the rank minimization problem:

minimize  ||M||« (10)
subject to mij = Zij, (2,]) e,

» Whereas the rank counts the number of nonzero singular values, the nuclear norm
sums their amplitude.

» Analogous to the 1 norm as a relaxation for the £y norm as sparsity measure.
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Notation

Given an observed subset €2 of matrix entries, define the projection operator as:

[Pa(Z)]; ;= { 0 otherwise

Pq replaces the missing entries in Z with zeros, and leaves the observed
entries alone.
The optimization criterion is then :

> (zij—mij)* = ||Pa(Z) — Pa(M)|| (11)
(1,5)€Q
where || - || is the Frobenius norm of a matrix defined as the element-wise

sum of squares.
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Singular Value Thresholding for Matrix Completion,™

» Solves the optimization problem:

minimize  ||M||«

12
subject to Po(M) = Pq(Z), (12)

» The SVD of a matrix M of rank r is:
M=UsV"  ¥=diag({oi};<c,) (13)

*Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Singular Value Thresholding (SVT)

» For each 7 > 0, the soft-thresholding operator D is defined as:
D (M) = UDT(E)VT , D;(X) = diag(sgn(o;) {|os| —7}.) (14)

where t, t; = max(0,t). Operator applies soft-thresholding to the
singular values of M, effectively shrinking them towards zero.
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SVT Algorithm - Shrinkage Iterations

Fix 7 > 0 and a sequence {4;} of positive step sizes. Starting with Y =0,
inductively define for £k =1,2,...,

Mk _ DT(Yk_l)
YE = YR 45, Po(Z — MF)

MY = D (Y) =0 M2
Y! 04061 Po(Z—-0)
= 01Pa(Z)

= D, (Y') =D (5:Po(Z))
Y2 = 6,Po(Z)+62P0(Z — Dy (6,1 Po(Z)))

until a stopping criterion is reached. At each step, we only need to compute
an SVD and perform elementary matrix operations.
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SVT Algorithm - Shrinkage Iterations

1 iteration 10 iterations

50 iterations 100 iterations 250 iterations 500 iterations
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Image Inpainting - Convex Optimization Solver

With 70% of the Information.

Original Image Noisy Image Reconstructed
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Image Inpainting - Convex Optimization Solver

With 50% of the Information. And multiple columns missing.

Original Image Noisy Image Reconstructed
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Image Inpainting - Convex Optimization Solver

With 50% of the Information. PSNR=35.9 dB.

Original Image

Noisy Image Reconstructed
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Image Inpainting - SVT Algorithm™
With 50% of the Information. PSNR=38.1 dB.

Original Image Reconstructed

Noisy Image

*Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4
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Text Removal - Convex Optimization Solver

Original Image Noisy Image Reconstructed




Matrix Completion FSAN/ELEGS815

Netflix Movie Challenge - Reuvisited

» Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).

» Customers rated movies on a scale from 1 to 5. Matrix is very sparse with “only” 100 million of the
ratings present in the training set.

» Goal: Predict the ratings for unrated movies.

> (2006) “Cinematch” algorithm used by Netflix
RMSE=0.9525 over a large test set.

» Competition started in 2006, winner should
improve this RMSE by at least 10%.

» 2009 “Bellkor's Pragmatic Chaos,” uses a
combination of many statistical techniques to
win.
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SVT Algorithm Solution

Use SVT Algorithm to estimate not rated movies (zero entries in A), solving
the optimization problem:

minimize  ||A|«

subject to  Pq(A) = Po(A),

Note: The ratings matrix A is expected to be low-rank since user preferences
can be described by a few categories (k), such as the movie genres.
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SVT Algorithm Solution

Only k=4 singular values
different from zero

s
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