

FSAN/ELEG815: Statistical Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

2. Eigen Analysis, SVD, PCA, and Matrix Completion

Outline

Eigen Analysis

Eigen Properties

SVD

PCA

Matrix Completion Introduction Problem Formulation Optimization Problem Algorithms Image Inpainting

Eigen Analysis

Objective: Utilize tools from linear algebra to characterize and analyze matrices, especially the correlation matrix

- The correlation matrix plays a large role in statistical characterization and processing.
- ▶ Previously result: **R** is Hermitian.
- Further insight into the correlation matrix is achieved through eigen analysis
 - Eigenvalues and vectors
 - Matrix diagonalization
 - Application: Optimum filtering problems

Objective: For a Hermitian matrix ${\bf R},$ find a vector ${\bf q}$ satisfying

 $\mathbf{R}\mathbf{q} = \lambda\mathbf{q}$

- \blacktriangleright Interpretation: Linear transformation by ${\bf R}$ changes the scale, but not the direction of ${\bf q}$
- **Fact:** A $M \times M$ matrix **R** has M eigenvectors and eigenvalues

$$\mathbf{R}\mathbf{q}_i = \lambda_i \mathbf{q}_i \quad i = 1, 2, 3, \cdots, M$$

To see this, note

$$(\mathbf{R} - \lambda \mathbf{I})\mathbf{q} = \mathbf{0}$$

For this to be true, the row/columns of $(\mathbf{R} - \lambda \mathbf{I})$ must be linearly dependent,

$$\Rightarrow \mathsf{det}(\mathbf{R} - \lambda \mathbf{I}) = 0$$

Note: det $(\mathbf{R} - \lambda \mathbf{I})$ is a *M*th order polynomial in λ

• The roots of the polynomial are the eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_M$

$$\mathbf{R}\mathbf{q}_i = \lambda_i \mathbf{q}_i$$

• Each eigenvector \mathbf{q}_i is associated with one eigenvalue λ_i

► The eigenvectors are not unique

$$\begin{aligned} \mathbf{R}\mathbf{q}_i &= \lambda_i \mathbf{q}_i \\ \Rightarrow \mathbf{R}(a\mathbf{q}_i) &= \lambda_i (a\mathbf{q}_i) \end{aligned}$$

Consequence: eigenvectors are generally normalized, e.g., $|\mathbf{q}_i|=1$ for $i=1,2,\ldots,M$

Example (General two dimensional case) Let M = 2 and

$$\mathbf{R} = \left[\begin{array}{cc} R_{1,1} & R_{1,2} \\ R_{2,1} & R_{2,2} \end{array} \right]$$

Determine the eigenvalues and eigenvectors. Thus

$$\begin{aligned} \det(\mathbf{R} - \lambda \mathbf{I}) &= 0\\ \Rightarrow \begin{vmatrix} R_{1,1} - \lambda & R_{1,2} \\ R_{2,1} & R_{2,2} - \lambda \end{vmatrix} &= 0\\ \Rightarrow \lambda^2 - \lambda(R_{1,1} + R_{2,2}) + (R_{1,1}R_{2,2} - R_{1,2}R_{2,1}) &= 0\\ \Rightarrow \lambda_{1,2} &= \frac{1}{2} \left[(R_{1,1} + R_{2,2}) \pm \sqrt{4R_{1,2}R_{2,1} + (R_{1,1} - R_{2,2})} \right] \end{aligned}$$

Back substitution yields the eigenvectors:

$$\begin{bmatrix} R_{1,1} - \lambda & R_{1,2} \\ R_{2,1} & R_{2,2} - \lambda \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In general, this yields a set of linear equations. In the M = 2 case:

$$(R_{1,1} - \lambda)q_1 + R_{1,2}q_2 = 0$$

$$R_{2,1}q_1 + (R_{2,2} - \lambda)q_2 = 0$$

Solving the set of linear equations for a specific eigenvalue λ_i yields the corresponding eigenvector, q_i

Eigen Analysis

Example (Two-dimensional white noise)

Let \mathbf{R} be the correlation matrix of a two-sample vector of zero mean white noise

$$\mathbf{R} = \left[\begin{array}{cc} \sigma^2 & 0\\ 0 & \sigma^2 \end{array} \right]$$

Determine the eigenvalues and eigenvectors.

Carrying out the analysis yields eigenvalues

$$\lambda_{1,2} = \frac{1}{2} \left[(R_{1,1} + R_{2,2}) \pm \sqrt{4R_{1,2}R_{2,1} + (R_{1,1} - R_{2,2})} \right]$$
$$= \frac{1}{2} \left[(\sigma^2 + \sigma^2) \pm \sqrt{0 + (\sigma^2 - \sigma^2)} \right] = \sigma^2$$

and eigenvectors

$$\mathbf{q}_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$
 and $\mathbf{q}_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Note: The eigenvectors are unit length (and orthogonal), and a start a start and a start a sta

Eigen Properties

Property (eigenvalues of \mathbf{R}^k)

If $\lambda_1, \lambda_2, \cdots, \lambda_M$ are the eigenvalues of **R**, then $\lambda_1^k, \lambda_2^k, \cdots, \lambda_M^k$ are the eigenvalues of **R**^k.

Proof: Note $\mathbf{R}\mathbf{q}_i = \lambda_i \mathbf{q}_i$. Multiplying both sides by \mathbf{R} k-1 times,

$$\mathbf{R}^{k}\mathbf{q}_{i} = \lambda_{i}\mathbf{R}^{k-1}\mathbf{q}_{i} = \lambda_{i}^{k}\mathbf{q}_{i}$$

Property (linear independence of eigenvectors) The eigenvectors q_1, q_2, \dots, q_M , of \mathbf{R} are linearly independent, i.e.,

$$\sum_{i=1}^{M} a_i \mathbf{q}_i \neq \mathbf{0}$$

for all nonzero scalars a_1, a_2, \cdots, a_M .

Property (Correlation matrix eigenvalues are real & nonnegative) The eigenvalues of \mathbf{R} are real and nonnegative. Proof:

$$\begin{aligned} \mathbf{R}\mathbf{q}_{i} &= \lambda_{i}\mathbf{q}_{i} \\ \Rightarrow \mathbf{q}_{i}^{H}\mathbf{R}\mathbf{q}_{i} &= \lambda_{i}\mathbf{q}_{i}^{H}\mathbf{q}_{i} \qquad [\text{pre-multiply by } \mathbf{q}_{i}^{H}] \\ \Rightarrow \lambda_{i} &= \frac{\mathbf{q}_{i}^{H}\mathbf{R}\mathbf{q}_{i}}{\mathbf{q}_{i}^{H}\mathbf{q}_{i}} \geq 0 \end{aligned}$$

Follows from the facts: **R** is positive semi-definite and $\mathbf{q}_i^H \mathbf{q}_i = |\mathbf{q}_i|^2 > 0$ Note: In most cases, **R** is positive definite and

$$\lambda_i > 0, \qquad i = 1, 2, \cdots, M$$

Eigen Properties

Property (Unique eigenvalues \Rightarrow orthogonal eigenvectors) If $\lambda_1, \lambda_2, \dots, \lambda_M$ are unique eigenvalues of **R**, then the corresponding eigenvectors, $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_M$, are orthogonal. Proof:

$$\mathbf{R}\mathbf{q}_{i} = \lambda_{i}\mathbf{q}_{i}$$
$$\Rightarrow \mathbf{q}_{j}^{H}\mathbf{R}\mathbf{q}_{i} = \lambda_{i}\mathbf{q}_{j}^{H}\mathbf{q}_{i} \qquad (*)$$

Also, since λ_j is real and \mathbf{R} is Hermitian

$$\mathbf{R}\mathbf{q}_{j} = \lambda_{j}\mathbf{q}_{j}$$
$$\Rightarrow \mathbf{q}_{j}^{H}\mathbf{R} = \lambda_{j}\mathbf{q}_{j}^{H}$$
$$\Rightarrow \mathbf{q}_{j}^{H}\mathbf{R}\mathbf{q}_{i} = \lambda_{j}\mathbf{q}_{j}^{H}\mathbf{q}_{i}$$

Substituting the LHS from (*)

$$\Rightarrow \lambda_i \mathbf{q}_j^H \mathbf{q}_i = \lambda_j \mathbf{q}_j^H \mathbf{q}_i$$

<ロ> < @ > < E > < E > E の (0 10/103

FSAN/ELEG815

Thus

$$\lambda_i \mathbf{q}_j^H \mathbf{q}_i = \lambda_j \mathbf{q}_j^H \mathbf{q}_i$$
$$\Rightarrow (\lambda_i - \lambda_j) \mathbf{q}_j^H \mathbf{q}_i = 0$$

Since $\lambda_1, \lambda_2, \cdots, \lambda_M$ are unique

$$\mathbf{q}_j^H \mathbf{q}_i = 0 \qquad i \neq j$$

 \Rightarrow $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_M$ are orthogonal. QED

Diagonalization of ${\bf R}$

Objective: Find a transformation that transforms the correlation matrix into a diagonal matrix.

Let $\lambda_1, \lambda_2, \cdots, \lambda_M$ be unique eigenvectors of \mathbf{R} and take $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_M$ to be the M orthonormal eigenvectors

$$\mathbf{q}_i^H \mathbf{q}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Define $\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_M]$ and $\mathbf{\Omega} = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_M)$. Then consider

$$\mathbf{Q}^{H}\mathbf{R}\mathbf{Q} = \begin{bmatrix} \mathbf{q}_{1}^{H} \\ \mathbf{q}_{2}^{H} \\ \vdots \\ \mathbf{q}_{M}^{H} \end{bmatrix} \mathbf{R}[\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{M}]$$

Eigen Properties

FSAN/ELEG815

$$\mathbf{Q}^{H} \mathbf{R} \mathbf{Q} = \begin{bmatrix} \mathbf{q}_{1}^{H} \\ \mathbf{q}_{2}^{H} \\ \vdots \\ \mathbf{q}_{M}^{H} \end{bmatrix} \mathbf{R} [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{M}]$$
$$= \begin{bmatrix} \mathbf{q}_{1}^{H} \\ \mathbf{q}_{2}^{H} \\ \vdots \\ \mathbf{q}_{M}^{H} \end{bmatrix} [\lambda_{1} \mathbf{q}_{1}, \lambda_{2} \mathbf{q}_{2}, \cdots, \lambda_{N} \mathbf{q}_{M}]$$
$$= \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{M} \end{bmatrix}$$
$$\Rightarrow \mathbf{Q}^{H} \mathbf{R} \mathbf{Q} = \mathbf{\Omega} \quad (\text{eigenvector diagonalization of } \mathbf{R})$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ · ⑦ < ♡ 13/103

Eigen Properties

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Property (Q is unitary) Q is unitary, i.e., $Q^{-1} = Q^H$

Proof: Since the q_i eigenvectors are orthonormal

$$\mathbf{Q}^{H}\mathbf{Q} = \begin{bmatrix} \mathbf{q}_{1}^{H} \\ \mathbf{q}_{2}^{H} \\ \vdots \\ \mathbf{q}_{M}^{H} \end{bmatrix} [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{M}] = \mathbf{I}$$
$$\Rightarrow \mathbf{Q}^{-1} = \mathbf{Q}^{H}$$

Property (Eigen decomposition of **R**) The correlation matrix can be expressed as

$$\mathbf{R} = \sum_{i=1}^{M} \lambda_i \mathbf{q}_i \mathbf{q}_i^H$$

Proof: The correlation diagonalization result states

$$\mathbf{Q}^{H}\mathbf{R}\mathbf{Q} = \mathbf{\Omega}$$

Isolating ${\bf R}$ and expanding,

$$\begin{split} \mathbf{R} &= & \mathbf{Q} \mathbf{\Omega} \mathbf{Q}^{H} = [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{M}] \mathbf{\Omega} \begin{bmatrix} \mathbf{q}_{1}^{H} \\ \mathbf{q}_{2}^{H} \\ \vdots \\ \mathbf{q}_{M}^{H} \end{bmatrix} \\ &= & [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{M}] \begin{bmatrix} \lambda_{1} \mathbf{q}_{1}^{H} \\ \lambda_{2} \mathbf{q}_{2}^{H} \\ \vdots \\ \lambda_{M} \mathbf{q}_{M}^{H} \end{bmatrix} = \sum_{i=1}^{M} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{H} \end{split}$$

Eigen Properties

Aside (trace & determinant for matrix products) Note trace(\mathbf{A}) $\stackrel{\triangle}{=} \sum_{i} A_{i,i}$. Also,

 $\mathsf{trace}(\boldsymbol{A}\boldsymbol{B}) = \mathsf{trace}(\boldsymbol{B}\boldsymbol{A}) \qquad \mathsf{similarly} \qquad \mathsf{det}(\boldsymbol{A}\boldsymbol{B}) = \mathsf{det}(\boldsymbol{A})\mathsf{det}(\boldsymbol{B})$

Property (Determinant-Eigenvalue Relation)

The determinant of the correlation matrix is related to the eigenvalues as follows:

$$\mathsf{det}(\mathbf{R}) = \prod_{i=1}^M \lambda_i$$

Proof: Using $\mathbf{R} = Q \Omega Q^H$ and the above, $\det(\mathbf{R}) = \det(Q \Omega Q^H)$ $= \det(\mathbf{Q})\det(\mathbf{Q}^H)\det(\mathbf{\Omega}) = \det(\mathbf{\Omega}) = \prod_{i=1}^M \lambda_i$

Property (Trace–Eigenvalue Relation)

The trace of the correlation matrix is related to the eigenvalues as follows:

$$\mathsf{trace}(\mathbf{R}) = \sum_{i=1}^M \lambda_i$$

Proof: Note

$$\begin{aligned} \mathsf{trace}(\mathbf{R}) &= \mathsf{trace}(\boldsymbol{Q}\boldsymbol{\Omega}\boldsymbol{Q}^{H}) \\ &= \mathsf{trace}(\mathbf{Q}^{H}\boldsymbol{Q}\boldsymbol{\Omega}) \\ &= \mathsf{trace}(\boldsymbol{\Omega}) \\ &= \sum_{i=1}^{M} \lambda_{i} \end{aligned}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 18/103

Matrix-Vector Multiplication

Example in 2D:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

and,

What is the geometrical meaning of the matrix-vector multiplication?

FSAN/ELEG815

Matrix-Vector Multiplication

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

Rotates the vector ∠θ
 Stretches the vector

FSAN/ELEG815

Matrix-Vector Multiplication

To rotate ${\bf x}$ by an angle $\theta,$ we pre-multiply by

$$\mathbf{A} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Stretch ${\bf x}$ by factor $\alpha,$ pre-multiply by

$$\mathbf{A} = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$

Matrix-Vector Multiplication

Consider the vectors \mathbf{v}_1 and \mathbf{v}_2 depicting a circle. What happens to the circle under matrix multiplication?

Matrix-Vector Multiplication

What happens to the 2D circle under matrix multiplication?

 σ_1, σ_2 "Stretching" constant

Note: Ortogonality holds since they are all rotated by the same angle.

Matrix-Vector Multiplication

What happens to the n-D hyper-sphere under matrix multiplication?

n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

The mapping can be written as

$$\mathbf{A}\mathbf{v}_1 = \sigma_1 \hat{\mathbf{u}}_1$$

$$\vdots \qquad \vdots$$

$$\mathbf{A}\mathbf{v}_n = \sigma_j \hat{\mathbf{u}}_n$$

Expressed in matrix form as

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{M} \end{bmatrix}_{\mathbf{A} \in \mathbb{C}^{m \times n}} \underbrace{ \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \ \dots \mathbf{v}_n \end{bmatrix}}_{\mathbf{V} \ \mathbb{C}^{n \times n}} = \underbrace{ \begin{bmatrix} \hat{\mathbf{u}}_1 \ \hat{\mathbf{u}}_2 \ \dots \hat{\mathbf{u}}_n \end{bmatrix}}_{\hat{\mathbf{U}} \ \mathbb{C}^{m \times n}} \underbrace{ \begin{bmatrix} \sigma_1 \ \dots \ 0 \\ \vdots \ \ddots \ \vdots \\ 0 \ \dots \ \sigma_n \end{bmatrix}}_{\hat{\mathbf{\Sigma}} \ \mathbb{C}^{n \times n}}$$
$$\mathbf{AV} = \hat{\mathbf{U}} \hat{\mathbf{\Sigma}}$$

n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be unitary orthonormal vectors, then $\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \ldots \ \mathbf{v}_n]$ is a unitary transformation matrix, that is

$$\mathbf{V}^{-1} = \mathbf{V}^H$$

Let $\hat{\mathbf{u}}_1, \dots, \hat{\mathbf{u}}_n$ be unitary orthonormal vectors, then $\hat{\mathbf{U}} = [\hat{\mathbf{u}}_1 \ \hat{\mathbf{u}}_2 \ \dots \ \hat{\mathbf{u}}_n]$ is a unitary transformation matrix, that is

$$\mathbf{U}^{-1} = \hat{\mathbf{U}}^H$$

Reduced Singular Value Decomposition

The mapping is thus given by,

$$\textbf{AV}=\hat{\textbf{U}}\hat{\boldsymbol{\Sigma}}$$

Multiply both sides by \mathbf{V}^{-1} we obtain:

$$\mathbf{A}\mathbf{V}\mathbf{V}^{-1} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^{-1}$$
$$\mathbf{A}\mathbf{V}\mathbf{V}^{H} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^{H}$$
$$\mathbf{A}\mathbf{I} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^{H}$$
$$\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^{H}$$

where $\Sigma = \text{diag}([\sigma_1, \sigma_2, \dots, \sigma_n])$, such that $\sigma_1 \ge \sigma_2 \ge \dots \sigma_p \ge 0$.

FSAN/ELEG815

Singular Value Decomposition

Reduced SVD

SVD

Theorem 1

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a singular value decomposition (SVD).

- Singular values σ_j are uniquely determined.
- ▶ If **A** is square σ_j are distinct.
- ▶ u_j and v_j are also unique up to a complex sign. (unique if the complex sign is ignored)

SVD calculation

Start with $\mathbf{A}^{\mathsf{T}}\mathbf{A}$:

$$\begin{aligned} \mathbf{A}^{\mathsf{H}}\mathbf{A} &= \left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{H}\right)^{\mathsf{H}}\left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{H}}\right) \\ &= \mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\mathsf{H}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{H} \\ \mathbf{A}^{\mathsf{H}}\mathbf{A}\mathbf{V} &= \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathsf{H}}\mathbf{V} \\ \mathbf{A}^{\mathsf{H}}\mathbf{A}\mathbf{V} &= \mathbf{V}\boldsymbol{\Sigma}^{2} \end{aligned}$$

Reduces to an eigenvalue decomposition problem of the form:

$$\underbrace{\mathbf{A}^{\mathsf{T}}\mathbf{A}}_{\mathbf{B}}\mathbf{V} = \mathbf{V}\underbrace{\boldsymbol{\Sigma}^{2}}_{\mathbf{\Lambda}},$$

where Λ is a diagonal matrix with the eigenvalues of B and V corresponds to the eigenvectors of B.

SVD calculation

How do we calculate **U**:

$$\begin{array}{rcl} \boldsymbol{A}\boldsymbol{A}^{H} &=& \left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{H}\right)\left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{H}\right)^{H} \\ &=& \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{H}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{H} \\ \boldsymbol{A}\boldsymbol{A}^{H}\boldsymbol{U} &=& \boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{H}\boldsymbol{U} \\ \boldsymbol{\underbrace{A}}\boldsymbol{A}^{H}\boldsymbol{U} &=& \boldsymbol{U}\underbrace{\boldsymbol{\Sigma}^{2}}_{\boldsymbol{\Lambda}} \end{array}$$

Eigenvalue problem where Λ is a diagonal matrix with the eigenvalues of **B** and **U** corresponds to the eigenvectors of **B**.

Netflix Movie Challenge

- ▶ Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).
- Customers rated movies on a scale from 1 to 5. Matrix is very sparse with "only" 100 million of the ratings present in the training set.
- Goal: Predict the ratings for unrated movies.

	dorboard			
	auciboura			
howing	Test Score. Click here to show quiz score			
indexed a	op 20 · Raders.			
Rank	Team Name	Best Test Score	5 Improvement	Best Submit Time
Grand	Prize - RHSE = 0.8567 - Winning T		natic Chaos	
1 - 1	SelKar's Pregmatic Chaos	0.8567	10.06	2009-07-28 18:18:28
2	The Ensentie	0.8567	10.06	2009-07-28 18:38:22
3	Grant Prize Teem	0.8582	9.90	2009-07-10 21:24:40
4	Opens Solutions and Vandelay United	0.8568	9.84	2009-07-10 01:12:31
5	Vandelay Industries 1	0.8591	9.81	2009-07-10 00:32:20
6	Pragmatic Theory	0.8594	9.77	2009-05-24 12:06:58
5 I.	BelKar in BigChaos	0.8601	8.70	2009-05-13 08:14:09
	Date.	0.8012	8.58	2009-07-24 17:15:43
-	Feedua Rendered	0.8022	9.42	2009-07-12 13:11:31
	Oters Salation	0.8623	9.47	2008-07-34 10:34 07
12	Bellfor	0.8624	9.45	2009-07-26 17:19:11
Preser		inning Team. Bellike	r in BigChase	
13	siangliano	0.8642	9.27	2009-07-15 14:53:22
14	Ontwity	0.8643	9.25	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-05-21 19:24:53
16	invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a parage	0.8062	9.06	2009-05-24 10:02:54
18	J.Dermin.Su	0.8666	9.02	2009-03-07 17:10:17
19	Craig Carrisheel	0.8566	9.02	2009-07-25 16:00:54
80	accedit	0.8668	9.00	2009-03-21 16:20:50
Prepr	nas Prise 2027 - RMSE = 0.8723 - W		1)	
Gren	atch.score - RMSE = 0.9525			

- (2006) "Cinematch" algorithm used by Netflix RMSE=0.9525 over a large test set.
- Competition started in 2006, winner should improve this RMSE by at least 10%.
- 2009 "Bellkor's Pragmatic Chaos," uses a combination of many statistical techniques to win.

FSAN/ELEG815

Movie Rating - A Solution

- Describe a movie as an array of factors, e.g. comedy, action...
- Describe each viewer using same factors, e.g. likes comedy, likes action, etc
- Rating based on match/mismatch
- ► More factors → better prediction

Singular Value Decomposition Solution

Viewers rated movies on a scale from 1 to 5. 0 for movies that were not rated by the user. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

- Each column j is a different movie
- Each row i is a different viewer
- Each element a_{i,j} represents the rating of movie j by viewer i

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5		
Viewer 1	0	1	0	0	5		
Viewer 2	4	2	0	0	0		
Viewer 3	0	0	3	3	0		
Viewer 4	4	2	0	0	0		
Viewer 5	0	0	0	0	5		
Viewer 6	0	0	3	3	0		
Viewer 7	1	0	0	0	4		
Viewer 8	2	1	0	0	4		
Viewer 9	1	0	0	0	4		
\mathbf{A} =	$\begin{bmatrix} a_{1,1} \\ \vdots \end{bmatrix}$		···· ···		$\begin{bmatrix} a_{1,n} \\ \vdots \end{bmatrix}$		
$\begin{bmatrix} a_{m,1} & \dots & a_{m,n} \end{bmatrix}$ ata or the rating of a movie that							

Goal: Use SVD to predict unobserved data or the rating of a movie that hasn't come out yet.

FSAN/ELEG815

Singular Value Decomposition Solution

We want to classify Movies and Viewers
$$Movies = \begin{cases}
Category 1 \\
Category 2 \\
Category 3 \\
\vdots
\end{cases}$$

Intuitively, if $Movie_1 \approx Movie_2$, these movies are similar (same category).

Categories are determined by matrix ${\bf A}$ and SVD algorithm.

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
/iewer 1	0	1	0	0	5
/iewer 2	4	2	0	0	0
/iewer 3	0	0	3	3	0
/iewer 4	4	2	0	0	0
/iewer 5	0	0	0	0	5
/iewer 6	0	0	3	3	0
/iewer 7	1	0	0	0	4
/iewer 8	2	1	0	0	4
/iewer 9	1	0	0	0	4

Singular Value Decomposition Solution

Now, consider that each movie belongs to more than one category e.g. half comedy and half action. This can be written as:

$$Movie_j = v_1 Cat1 + v_2 Cat2 + \dots + v_n Catn$$

s.t. $||\mathbf{v}||_2 = 1$

where the set of categories $\{Cat j \in \mathbb{R}^{n \times 1}\}$ forms an orthonormal basis.

$$\mathsf{Cat} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times n}$$

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
Viewer 1	0	1	0	0	5
Viewer 2	4	2	0	0	0
Viewer 3	0	0	3	3	0
Viewer 4	4	2	0	0	0
Viewer 5	0	0	0	0	5
Viewer 6	0	0	3	3	0
Viewer 7	1	0	0	0	4
Viewer 8	2	1	0	0	4
Viewer 9	1	0	0	0	4

In the case of Viewers, we use the same Movies' categories:

$$Movies = \left\{ \begin{array}{c} \text{Category 1} \\ \text{Category 2} \\ \text{Category 3} \\ \vdots \end{array} \right\} = Viewers.$$

E.g. a viewer that loves comedy is represented with the same unit vector of the comedy category movies (Cat $i \in \mathbb{R}^{1 \times n}$). Each Viewer is represented as:

$$\label{eq:viewer} \begin{split} Viewer_i = & u_1 \mathsf{Cat1} + u_2 \mathsf{Cat2} + \dots + u_n \mathsf{Catn} \\ & \mathsf{s.t.} ||\mathbf{u}||_2 = 1 \end{split}$$

	Movie	Movie	Movie	Movie.	Movie
Viewer 1	0	1	0	0	5
Viewer 2	4	2	0	0	0
Viewer 3	0	0	3	3	0
Viewer 4	4	2	0	0	0
Viewer 5	0	0	0	0	5
Viewer 6	0	0	3	3	0
Viewer 7	1	0	0	0	4
Viewer 8	2	1	0	0	4
Viewer 9	1	0	0	0	4

If m > n i.e # of Viewers > # of Movies, each Viewer is represented as:

$$\label{eq:viewer} \begin{split} Viewer_i = & u_1\mathsf{Cat1} + u_2\mathsf{Cat2} + \dots + u_n\mathsf{Catn} + \dots + u_m\mathsf{Catm} \\ & \mathsf{s.t.}||\mathbf{u}||_2 = 1 \end{split}$$

where $Cat i \in \mathbb{R}^{1 \times m}$. Thus, useless categories vectors with zero rating value are added.

From Theorem 1:

There exist a unique decomposition into categories. Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ can be factorized as $\mathbf{A} = \hat{\mathbf{U}} \Sigma \mathbf{V}^{H}$ where:

We have more viewers than movies:

New categories are created. The new vectors are still unit vectors orthonormal to all the basis vectors but the ratings of these useless categories are zero.

Note: consider reduced SVD i.e. consider only useful categories.

Singular Value Decomposition Solution

Each row vector (u_i) in Û represents the taste of a Viewer_i on the corresponding categories.

$$\hat{\mathbf{U}} = \begin{bmatrix} u_{1,1} & \cdots & \cdots & u_{1,n} \\ \vdots & \ddots & \ddots & \vdots \\ u_{m,1} & \cdots & \cdots & u_{m,n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_m \end{bmatrix}$$

Each column (v_j) in V^H represents the content of a Movie_j on the corresponding categories.

$$\mathbf{V}^{H} = \begin{bmatrix} v_{1,1} & \cdots & \cdots & v_{1,n} \\ \vdots & \ddots & \ddots & \vdots \\ v_{n,1} & \cdots & \cdots & v_{n,n} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \end{bmatrix}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 41/103

Each singular value σ_{ii} in Σ computes how a viewer of category i rates a movie of the same category i.

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1,1} & 0 & \cdots & 0 \\ \vdots & \sigma_{2,2} & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n,n} \end{bmatrix}$$

The representation of each movie can be obtained by

$$\begin{split} Movie_j &= v_{1,j}\mathsf{Cat1} + v_{2,j}\mathsf{Cat2} + \dots + v_{n,j}\mathsf{Catn} \qquad \text{s.t.} ||\mathbf{v}_j||_2 = 1 \\ &= v_{1,j} \begin{bmatrix} \sqrt{\sigma_{1,1}} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + v_{2,j} \begin{bmatrix} 0 \\ \sqrt{\sigma_{2,2}} \\ \vdots \\ 0 \end{bmatrix} + \dots + v_{n,j} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \sqrt{\sigma_{n,n}} \end{bmatrix} \\ &= \sqrt{\Sigma} \mathbf{v}_j \qquad \in \mathbb{C}^{n \times 1} \end{split}$$

The representation of each viewer can be obtained by

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 44/103

Given the decomposition of a movie and a viewer, the rating is estimated by:

- Considering the rating from 60 viewers to 16 movies of 4 different genres(action, romance, sci-fi, comedy), we generate $\mathbf{A} \in \mathbb{R}^{60 \times 16}$
 - Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated by the user.
 - Observe the same 4 categories of viewers.

Singular Value Decomposition - Example

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 49/103

Singular Value Decomposition - Example

To estimate not rated movies (zero entries in A), we use additional information: A is known to be low-rank or approximately low-rank.

Thus, we are going to use the k-rank approximation of the matrix ${f A}$ that is:

 $\hat{\mathbf{A}} = \mathbf{U}\hat{\boldsymbol{\Sigma}}_k\mathbf{V}^H$

where $\hat{\Sigma}_k$ has all but the first k singular values σ_{ii} set to zero.

The ratings different from zero in **A** are set to its original value.

Note: The ratings matrix **A** is expected to be low-rank since user preferences can be described by a few categories (k), such as the movie genres.

Singular Value Decomposition - Example

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 51/103

SVD

FSAN/ELEG815

Principal Component Analysis (PCA)

- Simple, method for extracting relevant information from confusing data sets.
- ▶ How to reduce a complex data set to a lower dimension?
- Consider a mass attached to a spring which oscillates as shown below.

$$F = ma$$

$$-w^{2}f = m\frac{d^{2}f}{dt}$$

$$f(t) = A\cos(wt + w_{0})$$

What if we did not know that F = ma?

PCA - Motivation: Toy example

- \blacktriangleright Since we live in a 3D world \rightarrow use three cameras to capture data from the system.
- \blacktriangleright No information about the real x,y, and z axes \rightarrow camera positions are chosen arbitrarily.
- How do we get from this data set to a simple equation of z ?

PCA - Motivation: Toy example

- ► Three cameras give redundant information.
- Only one camera at a specific angle necessary to describe the system behavior.
- PCA is used to avoid redundancy.

Change of Basis

- PCA: Is there another basis, which is a linear combination of the original basis, that best respresents the data set?
- Let X be the original data set, where each column is a single measurements set.
- Let **Y** be a linear transformation by **P**, i.e. **Y** = **PX**, where $\mathbf{X} = [\mathbf{x}_1 | \dots | \mathbf{x}_n]$ and $\mathbf{x}_i \in \mathbb{R}^{m \times 1}$ represents a sampled vector. Implications:
 - Geometrically **P** is a rotation and a stretch which transforms **X** into **Y**.
 - ► The rows of P, {p₁,...,p_m} are a set of new basis vectors for expressing the columns of X.

What is the best way to re-express X?, what is a good choice for P?

Noise

- Signal and noise variances are depicted as σ_{signal}^2 and σ_{noise}^2 .
- The largest direction of variance is not along the natural basis but along the best-fit line.
- ▶ The directions with largest variances contain the dynamics of interest.
- lntuition: Find the direction indicated by σ_{signal} .

Redundancy

- Figures depict possible plots between two arbitrary measurement types r₁ and r₂.
- \blacktriangleright Low redundancy \rightarrow uncorrelated recordings
- ► High redundancy→ correlated recordings, e.g. the sensors are too close or the measured variables are equivalent.
- If recordings are highly correlated it is not necessary to measure both of them.

PCA - Basic concepts

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]$ and $\mathbf{b} = [b_1, b_2, \dots, b_n]$ be two sets of measurements. Are they related? If the mean of a and b is zero, then:

 Variance: How large the change is in each vector.

$$\begin{split} \sigma_a^2 &= \frac{1}{n} \mathbf{a} \mathbf{a}^T = \frac{1}{n} \sum_i a_i^2 \\ \sigma_b^2 &= \frac{1}{n} \mathbf{b} \mathbf{b}^T = \frac{1}{n} \sum_i b_i^2 \end{split}$$

 Covariance: Statistical relationship between data in a and b.

$$\sigma_{ab}^2 = \frac{1}{n} \mathbf{a} \mathbf{b}^T = \frac{1}{n} \sum_i a_i b_i$$

Variance and Covariance

Let **X** be defined as $\mathbf{X} = [\mathbf{x}_1^T | \dots | \mathbf{x}_m^T]$, where $\mathbf{x}_i \in \mathbb{R}^{n \times 1}$ is a column vector that corresponds to all measurements of a particular type. Then the covariance matrix is defined as:

$$\mathbf{C}_{\mathbf{X}} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

The covariance values reflect the noise and redundacy in the measurements.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q · 60/103

Variance and Covariance

Recall C_X is the covariance matrix of X defined as $C_X = \frac{1}{n} X X^T$.

• Covariance matrix in the spring example is $\mathbf{C}_{\mathbf{X}} \in \mathbb{R}^{6 \times 6}$:

Diagonal: Variance measures; Off-diagonal: covariance between all pairs.
 C_X is hermitian and symmetric, i.e. C_X = C^T_X * = C^T_X.

Covariance Matrix Interpretation

$$\mathbf{C}_{\mathbf{X}} = \begin{bmatrix} \sigma_{y_1y_1}^2 & \sigma_{y_1z_1}^2 & \sigma_{y_1y_2}^2 & \sigma_{y_1z_2}^2 & \sigma_{y_1y_3}^2 & \sigma_{y_1z_3}^2 \\ \sigma_{z_1y_1}^2 & \sigma_{z_1z_1}^2 & \sigma_{z_1y_2}^2 & \sigma_{z_1z_2}^2 & \sigma_{z_1y_3}^2 & \sigma_{z_1z_3}^2 \\ \sigma_{y_2y_1}^2 & \sigma_{y_2z_1}^2 & \sigma_{y_2y_2}^2 & \sigma_{y_2z_2}^2 & \sigma_{y_2y_3}^2 & \sigma_{y_2z_3}^2 \\ \sigma_{z_2y_1}^2 & \sigma_{z_2z_1}^2 & \sigma_{z_2y_2}^2 & \sigma_{z_2z_2}^2 & \sigma_{z_2y_3}^2 & \sigma_{z_2z_3}^2 \\ \sigma_{y_3y_1}^2 & \sigma_{y_3z_1}^2 & \sigma_{y_3y_2}^2 & \sigma_{y_3z_2}^2 & \sigma_{y_3y_3}^2 & \sigma_{y_3z_3}^2 \\ \sigma_{z_3y_1}^2 & \sigma_{z_3z_1}^2 & \sigma_{z_3y_2}^2 & \sigma_{z_3z_2}^2 & \sigma_{z_3y_3}^2 & \sigma_{z_3z_3}^2 \end{bmatrix}$$

Off-diagonal terms

If covariance is large then components are statistically dependent.

▶ If covariance is small then components are statistically independent.

Diagonal terms:

- ▶ If variance is large it contains a lot of information about the system.
- If variance is small it does not provide significant information about the system.

PCA

Goal: Change basis such that the covariance matrix of the data is diagonal.

- If off-diagonal terms ≈ 0 , the redundancies are eliminated.
- Diagonal terms represent the variance of each component.
- Components with large variance are the most representative.

Looks like the SVD!

PCA and Eigenvalue Decomposition

How to solve the problem?

- ▶ Data set: $\mathbf{X} \in \mathbb{R}^{m \times n}$, where *m* is the number of measurement types and *n* is the number of samples.
- ▶ PCA : Find an orthonormal matrix **P** in **Y** = **PX** such that $C_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{T}$ is a diagonal matrix.
- The rows of P are the principal components of X

PCA and Eigenvalue Decomposition

We begin rewriting $\boldsymbol{C}_{\boldsymbol{Y}}$ in terms of the unknown variable.

$$C_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{T}$$

$$= \frac{1}{n} (\mathbf{P} \mathbf{X}) (\mathbf{P} \mathbf{X})^{T}$$

$$= \frac{1}{n} \mathbf{P} \mathbf{X} \mathbf{X}^{T} \mathbf{P}^{T}$$

$$= \mathbf{P} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{T}\right) \mathbf{P}^{T}$$

$$= \mathbf{P} C_{\mathbf{X}} \mathbf{P}^{T}$$

PCA and Eigenvalue Decomposition

 C_X can be diagonalized by an orthogonal matrix of its eigenvectors since it is a symmetric matrix. Let $\mathbf{P} = \mathbf{Q}^T$, where \mathbf{Q} is a matrix with the eigenvectors of $\frac{1}{n}\mathbf{X}\mathbf{X}^T$, then:

$$\begin{aligned} \mathbf{C}_{\mathbf{Y}} &= \mathbf{P}\mathbf{C}_{\mathbf{X}}\mathbf{P}^{T} \\ &= \mathbf{P}\left(\mathbf{Q}\mathbf{\Omega}\mathbf{Q}^{T}\right)\mathbf{P}^{T} \\ &= \mathbf{P}\left(\mathbf{P}^{T}\mathbf{\Omega}\mathbf{P}\right)\mathbf{P}^{T} \\ &= \left(\mathbf{P}\mathbf{P}^{-1}\right)\mathbf{\Omega}\left(\mathbf{P}\mathbf{P}^{-1}\right) \\ &= \mathbf{\Omega} \end{aligned}$$

The transformation $\mathbf{Y} = \mathbf{P}\mathbf{X}$ diagonalizes the system. Covariance of \mathbf{Y} is a diagonal matrix with the eigenvalues of $\frac{1}{n}\mathbf{X}\mathbf{X}^{T}$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 67/103

PCA and SVD

The SVD of **X** is given by $\mathbf{X} = \mathbf{U} \Sigma \mathbf{V}^T$. Let $\mathbf{P} = \mathbf{U}^T$, then:

 $\mathbf{Y} = \mathbf{U}^T \mathbf{X},$

The covariance matrix of \boldsymbol{Y} is given by:

$$C_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{T}$$

= $\frac{1}{n} \mathbf{U}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{U}$
= $\frac{1}{n} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U}$
= $\frac{1}{n} \mathbf{\Sigma}^{2}$

・ロ ・ ・ 回 ・ ・ E ・ ・ E ・ の へ で 68/103

PCA

- The transformation Y = U^TX diagonalized the system. Covariance of Y is a diagonal matrix with the squared singular values of X multiplied by a factor of ¹/_n.
- It can be concluded that $\Sigma^2 = \Omega$, and $\sigma_i^2 = \lambda_i$.
- The principal components of the data matrix are given by \mathbf{U}^T .

Application: Face Recognition

- ▶ PCA in face recognition \triangleq Eigenfaces
- Intuition: Figure out the correlation between the rows/ colums of A from the SVD.

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T \tag{1}$$

- \blacktriangleright How important each direction is: Σ
- Principal Directions: U
- How each individual component (row/column) projects onto the principal components: V.

Data in Face Recognition

The data matrix is constructed by vectorizing the face images as shown below, i.e. $\mathbf{A} = [\mathbf{A}_1^T | \mathbf{A}_2^T | \dots | \mathbf{A}_N^T]^T$. The matrix will be $N \times M$, where N is the number of images in the data base and M is the number of pixels of each image.

Vectorized Image

Example - Celebrity Images

Example, take 5 images of each celebrity: George Clooney, Bruce Willis, Margaret Thatcher and Matt Damon. In the example, M = 240 * 160 = 38400 and N = 20.

$$\mathbf{A} = \begin{bmatrix} ----- & \text{Image 1} & ----- & --- \\ ----- & \text{Image 2} & ----- & --- \\ ----- & \text{Image 3} & ----- & ---- \\ ----- & \text{Image 20} & ------ & ----- \end{bmatrix}_{20 \times 38401}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 71/103

Average Faces

How do the average of the faces of these celebrities look like?

$$ar{\mathbf{a}}_i = rac{1}{5}\sum_{j=1}^5 \mathbf{A}_j$$
 where $\mathbf{A}_j \in \mathbb{R}^{1 imes M}$

Average Faces

What defines George Clooney's face?

- ▶ Data matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with the images of the example.
- Compute the correlation matrix of the features of the dataset, i.e. the pixels.
- The correlation matrix is $\mathbf{C} = \mathbf{A}^T \mathbf{A} \in \mathbb{R}^{M \times M}$, here M = 38400.
- ► High correlation values → everybody has eyes, a nose and a mouth.
- Correlations between images of the same person will be higher.

Average Face

Eigendecomposition

- Obtain the eigenvalue decomposition of
 C = A^TA. That is
 C = QΩQ⁻¹.
- ► First eigenvectors **q**_i ∈ ℝ^{M×1} are called the principal components (eigenfaces).
- One can reconstruct each face as a weighted sum of the eigenvectors.

Representing Faces onto Basis

Each face $\mathbf{A}_i \in \mathbb{R}^{1 \times M}$ in the data set $\mathbf{A} = [\mathbf{A}_1^T | \mathbf{A}_2^T | \dots | \mathbf{A}_N^T]^T$, can be represented as a linear combination of the best K eigenvectors:

$$\mathbf{A}_{i}^{T} = \sum_{j=1}^{K} w_{j} \mathbf{q}_{j}, \text{ where } w_{j} = \mathbf{q}_{j}^{T} \mathbf{A}_{i}^{T}$$
(2)

Projection of the Average faces into the K=20 largest Eigenvectors

- ▶ Q is M×M, from now on let V be the matrix formed by the first K=20 eigenvectors, i.e. V ∈ ℝ^{M×K}.
- ▶ Project the average faces $\bar{\mathbf{a}}_i \in \mathbb{R}^{1 \times M}$ onto the reduced eigenvector space, i.e. $\mathbf{p}_{\bar{\mathbf{a}}_i} = \bar{\mathbf{a}}_i \mathbf{V} \in \mathbb{R}^{1 \times K}$
- Projections for each face are characteristic of each average face and could be used for classification purposes.

Projection of new images

- Test set: New image of Margaret Thatcher, Maryl Streep as Margaret Thatcher in "The Iron Lady", Betty White.
- ▶ Project test images onto eigenvector space, $\mathbf{p} = \mathbf{x}\mathbf{V} \in \mathbb{R}^{1 \times K}$, where $\mathbf{x} \in \mathbb{R}^{1 \times M}$ is the new vectorized image and $\mathbf{V} \in \mathbb{R}^{M \times K}$ is the matrix with the first 20 eigenvectors of the database.
- Reconstruct images as $\hat{\mathbf{x}} = \mathbf{V} \mathbf{p}^T$.
- Error defined as the difference between the projection of the new image and the projection of the original Margaret Thatcher images o_jV where j = 1,...,5, that is

$$E_j = \frac{||\mathbf{o}_j \mathbf{V} - \mathbf{x} \mathbf{V}||}{||\mathbf{o}_j \mathbf{V}||},$$

where \mathbf{o}_j are the original images of the database, in this case the 5 images of Margareth Thatcher.

Projection of new images

Image depicts, from left to right

► Test images.

PCA

- Projection of the test images onto the eigenvector space p = xV.
- Reconstructed images using the first 20 eigenvectors of the database x̂ = Vp^T.
- Error of the projection with respect to each original Margareth Thatcher Image
 o_j for j = 1,...,5.

х

 $\mathbf{p} = \mathbf{x}\mathbf{V}$

 $||\mathbf{o}_{\mathbf{i}}\mathbf{V} - \mathbf{x}\mathbf{V}||$

Projection of new images

Х

クタご 79/103

Matrix Approximations and Completion

Given an $m \times n$ matrix $\mathbf{Z} = \{z_{ij}\}$, find a matrix $\hat{\mathbf{Z}}$ that approximates \mathbf{Z} .

Ž may have simpler structure.

Missing entries in Z, a problem known as *matrix completion*. Approach based on optimization:

$$\hat{\mathbf{Z}} = \arg \min_{\mathbf{M} \in \mathbb{R}^{m \times n}} ||\mathbf{Z} - \mathbf{M}||_F^2 \text{ subject to } \Phi(\mathbf{M}) \le c$$
(3)

where $||\mathbf{A}||_F^2 = \sum \sum_{i,j} |a_{ij}|^2$ is the Frobenius Norm, and $\Phi(\cdot)$ is a constraint function that encourages $\hat{\mathbf{Z}}$ to be sparse in some sense.

Constraint $\Phi(\mathbf{Z})$	Resulting method
(a) $ \hat{\mathbf{Z}} _{\ell_1} \leq c$	Sparse matrix approximation
(b) $rank(\hat{\mathbf{Z}}) \leq k$	Singular value decomposition
(c) $ \hat{\mathbf{Z}} _* \leq c$	Convex matrix approximation

- (a) ℓ_1 -norm of all entries of $\hat{\mathbf{Z}}$. Leads to a soft-thresholding $\hat{z}_{ij} = \operatorname{sign}(z_{ij})(|z_{ij}| \gamma)_+$, where $\gamma > 0$ is such that $\sum_{i=1}^m \sum_{j=1}^n |\hat{z}_{ij}| = c$.
- (b) Bounds the rank of Ẑ, or the number of nonzero singular values in Ẑ. Approximation is non-convex, but solution found by computing the SVD and truncating it to its top k components.
- (c) Relaxes the rank constraint to a *nuclear norm* ($||\mathbf{A}||_* = \sum_{i=1}^{\min\{m,n\}} \sigma_i$). Solved by computing the SVD and soft-thresholding its singular values.

FSAN/ELEG815

Motivation: Image Reconstruction from Incomplete Data

Reconstructed image

Incomplete image 50% of the pixels

Matrices with missing elements can be solved exactly using method (c), whereas methods based on (b) are more difficult to solve in general $a_{\rm c}$, $a_{\rm c} = 0.9$ $C_{\rm B2/103}$

The Singular Value Decomposition

Given an $m \times n$ matrix ${\bf Z}$ with $m \geq n,$ its singular value decomposition takes the form

$$\mathbf{Z} = \mathbf{U}\mathbf{D}\mathbf{V}^T \tag{4}$$

- ▶ **U** is an $m \times n$ orthogonal matrix ($\mathbf{U}^T \mathbf{U} = \mathbf{I}_n$) whose columns $\mathbf{u}_j \in \mathbb{R}^m$ are the *left singular vectors*.
- V is an n×n orthogonal matrix (V^TV = I_n) whose columns v_j ∈ ℝⁿ are the right singular vectors.
- ▶ The $n \times n$ matrix **D** is diagonal, with $d_1 \ge d_2 \ge \cdots \ge d_n \ge 0$ known as the *singular values*.

The Singular Value Decomposition

- If columns of Z are centered (zero mean), then the right singular vectors {v_j}ⁿ_{j=1} define the *principal components* of Z.
- The unit vector v₁ yields the linear combination s₁ = Zv₁ with highest sample variance among all possible choices of unit vectors.
- ▶ s₁ is the *first principal component* of Z, and v₁ is the corresponding *direction* or *loading* vector.

The Singular Value Decomposition

Suppose $r \leq \text{rank}(\mathbf{Z}) = 800$, and let \mathbf{D}_r be a diagonal matrix with all but the first r diagonal entries of \mathbf{D} set to zero. The optimization problem

$$\hat{\mathbf{Z}}_r = \min_{\mathsf{rank}(M)=r} ||\mathbf{Z} - \mathbf{M}||_F$$
(5)

has a closed form solution $\hat{\mathbf{Z}}_r = \mathbf{U}\mathbf{D}_r\mathbf{V}^T \triangleq$ the rank-r SVD. $\hat{\mathbf{Z}}_r$ is sparse in the sense that all but r singular values are zero.

800 Singular Values 164 Singular Values 24 Singular Values 12 Singular Values

Problem Formulation: Recover an $m \times n$ matrix **Z** when we only get to observe $p \ll mn$ of its entries.

- Impossible without additional information!
- Assumption: Matrix is known to be low-rank or approximately low-rank.
- Matrix Completion: Fill the missing entries.
- Used in: machine learning, computer vision...

Optimization Problem

- Observe the entries of the $m \times n$ matrix **Z** indexed by the subset $\Omega \subset \{1, \dots, m\} \times \{1, \dots, n\}.$
- Seek the lowest rank approximating matrix **Z** that interpolates the entries of **Z**minimize rank(M)

subject to
$$m_{ij} = z_{ij}, (i, j) \in \Omega,$$
 (6)

- Rank minimization problem is NP-hard.
- Forcing interpolation leads to overfitting.

Optimization Problem

Better to allow M to make some errors on the observed data:

minimize
$$\operatorname{rank}(\mathbf{M})$$

subject to $\sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2 \le \delta$, (7)

or equivalently

$$\underset{\operatorname{rank}(\mathbf{M})\leq r}{\operatorname{minimize}} \quad \sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2 , \tag{8}$$

Both problems are non-convex, and exact solutions are generally not available.

Matrix Completion Using the Nuclear Norm

▶ Nuclear norm of $\mathbf{M}_{m \times n}$:

$$|\mathbf{M}||_* = \sum_{k=1}^n \sigma_k(\mathbf{M}) \tag{9}$$

Convex relaxation of the rank minimization problem:

minimize
$$||\mathbf{M}||_*$$

subject to $m_{ij} = z_{ij}, (i, j) \in \Omega$, (10)

- Whereas the rank counts the number of nonzero singular values, the nuclear norm sums their amplitude.
- Analogous to the ℓ_1 norm as a relaxation for the ℓ_0 norm as sparsity measure.

Notation

Given an observed subset Ω of matrix entries, define the projection operator as:

$$\left[P_{\Omega}(\mathbf{Z})\right]_{i,j} = \left\{ \begin{array}{cc} z_{ij} & if \quad (i,j) \in \Omega \\ 0 & \text{otherwise} \end{array} \right.$$

 ${\it P}_{\Omega}$ replaces the missing entries in ${\bf Z}$ with zeros, and leaves the observed entries alone.

The optimization criterion is then :

$$\sum_{(i,j)\in\Omega} (z_{ij} - m_{ij})^2 = ||P_{\Omega}(\mathbf{Z}) - P_{\Omega}(\mathbf{M})||_F$$
(11)

where $|| \cdot ||_F$ is the Frobenius norm of a matrix defined as the element-wise sum of squares.

Singular Value Thresholding for Matrix Completion,⁺

Solves the optimization problem:

minimize $||\mathbf{M}||_*$ subject to $P_{\Omega}(\mathbf{M}) = P_{\Omega}(\mathbf{Z})$, (12)

▶ The SVD of a matrix **M** of rank *r* is:

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T , \ \mathbf{\Sigma} = \operatorname{diag}(\{\sigma_i\}_{1 \le i \le r})$$
(13)

⁺Cai et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4

Singular Value Thresholding (SVT)

For each $\tau \ge 0$, the soft-thresholding operator D_{τ} is defined as:

$$D_{\tau}(\mathbf{M}) = \mathbf{U} D_{\tau}(\mathbf{\Sigma}) \mathbf{V}^{T} , \ D_{\tau}(\mathbf{\Sigma}) = \operatorname{diag}(\operatorname{sgn}(\sigma_{i}) \{ |\sigma_{i}| - \tau \}_{+})$$
(14)

where t, $t_+ = \max(0, t)$. Operator applies soft-thresholding to the singular values of **M**, effectively shrinking them towards zero.

SVT Algorithm - Shrinkage Iterations

Fix $\tau > 0$ and a sequence $\{\delta_k\}$ of positive step sizes. Starting with $\mathbf{Y}^0 = \mathbf{0}$, inductively define for k = 1, 2, ...,

$$\left\{ \begin{array}{c} \mathbf{M}^k = D_{\tau}(\mathbf{Y}^{k-1}) \\ \mathbf{Y}^k = \mathbf{Y}^{k-1} + \delta_k P_{\Omega}(\mathbf{Z} - \mathbf{M}^k) \end{array} \right.$$

$$\begin{split} \mathbf{M}^{1} &= D_{\tau}(\mathbf{Y}^{0}) = 0 \\ \mathbf{Y}^{1} &= 0 + \delta_{1} P_{\Omega}(\mathbf{Z} - 0) \\ &= \delta_{1} P_{\Omega}(\mathbf{Z}) \end{split} \qquad \qquad \begin{aligned} \mathbf{M}^{2} &= D_{\tau}(\mathbf{Y}^{1}) = D_{\tau}(\delta_{1} P_{\Omega}(\mathbf{Z})) \\ \mathbf{Y}^{2} &= \delta_{1} P_{\Omega}(\mathbf{Z}) + \delta_{2} P_{\Omega}(\mathbf{Z} - D_{\tau}(\delta_{1} P_{\Omega}(\mathbf{Z}))) \end{aligned}$$

until a stopping criterion is reached. At each step, we only need to compute an SVD and perform elementary matrix operations.

FSAN/ELEG815

SVT Algorithm - Shrinkage Iterations

FSAN/ELEG815

Image Inpainting - Convex Optimization Solver

With 70% of the Information.

Original Image

FSAN/ELEG815

Image Inpainting - Convex Optimization Solver

With 50% of the Information. And multiple columns missing.

Original Image

FSAN/ELEG815

Image Inpainting - Convex Optimization Solver

With 50% of the Information. PSNR=35.9 dB.

Original Image

FSAN/ELEG815

Image Inpainting - SVT Algorithm⁺

With 50% of the Information. PSNR=38.1 dB.

Original Image

Noisy Image

Reconstructed

 $^+\mbox{Cai}$ et al. (2010), SIAM Journal on Optimization, Vol. 20, No. 4

Text Removal - Convex Optimization Solver

Original Image

Noisy Image

Netflix Movie Challenge - Revisited

- ▶ Dataset: n = 17,770 movies (columns) and m = 480,189 customers (rows).
- Customers rated movies on a scale from 1 to 5. Matrix is very sparse with "only" 100 million of the ratings present in the training set.
- Goal: Predict the ratings for unrated movies.

Le	aderboard			
howing	Test Score. Click here to show quiz score			
Rank	Team Name	Best Test Score	1 Improvement	Best Submit Time
State	Prize - RHSE = 0.8567 - Winning T	taini SeliKor's Prepr	natic Chaos	
1	SelKar's Pregmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensentie	0.8567	10.06	2009-07-28 18:38:22
K	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
	Opera Solutions and Vandelay United	0.8588	9.64	2009-07-10 01:12:31
	Vandelay Polusities 1	0.8591	8.81	2009-07-10 00:32:20
	Pragmatic meory	0.8594	8.77	2009-05-24 12:06:56
	Denkar in Digunation	0.8001	8.70	2009-05-13 10:14:19
	Easts?	0.0012	0.48	2009-07-07 17-19-03
10	Building	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 50:34 67
12	Delling	0.8624	9.45	2009-07-26 17:19:11
Prepr	ess Prize 2008 - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChase	
3	sianglang	0.8642	9.27	2009-07-15 14:53:22
14	Dravity	0.8643	9.25	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-05-21 19:24:53
16	invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a parage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:10:17
19	Craig Carrisheel	0.8566	9.02	2009-07-25 16:00:54
80	accedit	0.8668	9.00	2009-03-21 16:20:50
Press	nas Prise 2027 - RMSE = 0.8723 - W		1)	
Gnen	atch.score - RMSE = 0.9525			

- (2006) "Cinematch" algorithm used by Netflix RMSE=0.9525 over a large test set.
- Competition started in 2006, winner should improve this RMSE by at least 10%.
- 2009 "Bellkor's Pragmatic Chaos," uses a combination of many statistical techniques to win.

SVT Algorithm Solution

Use SVT Algorithm to estimate not rated movies (zero entries in A), solving the optimization problem:

minimize
$$||\hat{\mathbf{A}}||_*$$

subject to $P_{\Omega}(\hat{\mathbf{A}}) = P_{\Omega}(\mathbf{A})$,

Note: The ratings matrix **A** is expected to be low-rank since user preferences can be described by a few categories (k), such as the movie genres.

SVT Algorithm Solution

SVT Algorithm Solution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □